COSMOS is a four-week summer science and
engineering program focused on teaching motivated high school students topics
rarely seen in high school curriculums. My name is Kritin Karkare and I’m a
bioengineering undergraduate at UC San Diego, a former COSMOS Cluster 8 (Tissue
Engineering) alumnus, and current Cluster 7 (Synthetic Biology) teaching
assistant.
For the four weeks of the program, I covered
COSMOS life as a teaching assistant through this blog. In the first post, I provided
an introduction to COSMOS and interviewed Charles Tu, UC San Diego COSMOS
director. In the second, I interviewed several students and gave some of my
thoughts as a cluster assistant. For Week 3 I am highlighting the professors
that work to create and teach the COSMOS cluster courses; the three I
interviewed are the professors from Cluster 2: Engineering Design and Control
of Kinetic Sculptures.
Meet Veronica Eliasson, Associate Professor in
the Structural Engineering Department; Raymond de Callafon, Professor in the
Mechanical and Aerospace Engineering (MAE) Department; and Nathan Delson, Associate
Teaching Professor in the MAE Department. Their responses have been lightly
edited for clarity.
What is Cluster 2?
Delson: We
teach mechanical design and control of kinetic sculptures, so we introduce
students to what it’s like to be a mechanical engineer. A key part is that
they’re not just doing assignments, but that they’re creating something.
Since students come in with a different range of skills, we start with an
individual project. For week 1, students work individually to build a mechanical
clock. They choose any shape of clock pendulum that they want, write a clock
report, and are able to take it home. In the process of doing that, they learn
how to create Computer-Aided Design (CAD) models, which they use to laser cut and
to 3D print their clock parts. Students also use our shop facility for
drilling, reaming, press fitting, tapping, all the tools they need to use. They
simulate their pendulum using a computer program, which is one way engineers use
computers. We have a challenge to see who can predict the timing of their clock
most accurately. We then transition to a team project. And teamwork can be a
hard thing to learn, and Veronica has led a unique teambuilding exercise.
Eliasson: They
have to drop water balloons on a bed of nails and make the water balloons
survive from certain heights; they have straws, tape, and a few other parts
they can use for packaging. We use high-speed cameras so students can see how
the balloons pop or survive. Each individual creates design concepts on their
own over the weekend, then they form teams and create a risk chart and
determine what to do. Then the team builds their devices and perform drops increasing
in two-foot increments.
Delson: A lot
of people have done a similar project but with an egg—but the problem with egg
drops is that you get one egg, drop it off, and see if it survives or not. For
some people it survives, some people it doesn’t. But even the people whose egg
survives don’t know why it survives. There’s no data collection. It’s not like
the teacher gives you two dozen eggs to keep on iterating and learning. Water
balloons allow students to learn the scientific method: you try something, you
observe, you adapt. By bringing in these high-end, high-speed cameras and using
water balloons, you can do this experiment again and again and again. We change
it into a recursive process and teach them about the design process.
Has the cluster gone on any field trips?
De Callafon: We did an off-campus tour of Solar Turbines, but in addition this year we added tours of labs at UC San Diego. We
toured research labs at UC San Diego so the students get to see what actually
goes on there. For instance I talk to them about controls, so I took them to
the controls laboratory where both mechanical and aerospace students perform
experiments in control. In addition, we showed them the wind tunnel, water
channel, materials testing experiments used in senior year.
Eliasson: We
took them to three different labs in the structural engineering department, two
of them with more dynamic experiments. So it connects to the mechanical
engineering concepts. But then also the really big labs that we have here at UC
San Diego like the seismic research labs. Students get to wear hard hats and
walk around. I heard them comment afterwards ‘I had no idea structural engineering
could be so interesting!’
How did you get involved with COSMOS?
De Callafon: Nate
pulled me into this 13 years ago and I have enjoyed it ever since. On a
personal note, no one in my family went to college. I was the first one, and I
noticed that it was very hard for me to get into college. I didn’t have the
references or have anyone motivating me. It would have been nice if there was
someone I could have looked up to. That’s why I love doing this. Maybe there
are several kids who might really benefit from this program—that makes all the
work worth it. I love the fact that we mix kids from really good schools and
kids who have a lot of potential from not so good schools.
What are your favorite parts of teaching high school students?
Eliasson: Their
curiosity. They have really good imaginations. They come up with crazy ideas.
It’s really interesting to see how the students
come up with their projects and how they incorporate them with their printed
parts or their CAD parts along with the parts we’ve given them and try to make
them. They’re all laughing because they don’t know if it works. You can feel
the tension, like the excitement. I think that’s really unique.
Delson Another thing that I
really like is that the students are doing stuff above and beyond. First of all,
nobody’s doing it for a grade. You give them an assignment with X, Y and Z criteria,
and somebody tries to do a little bit extra. That’s what we want to encourage
in people, and that’s being self-driven. We’ve been engraved since kindergarten
through high school and beyond that teachers are telling you to do this to get
this grade—it’s not about exploring things you’re interested in. So if you
remove the grades the kids start becoming more curious.
De Callafon: When
I started studying I had no idea what to do. I wanted to do so many different
types of engineering. I did electrical for two years, was disappointed by it
and went on to study mechanical engineering. I remember there were one or two
professors that inspired me to do that. I hope to play that role too for our
students. The other thing I enjoy is that I teach both undergraduate and
graduate courses. I do consulting, I teach professionals. And it’s nice to add
to my teaching that I teach high school students—it’s adding to the whole range
of teaching I get to do. You learn that teaching is about targeting different
audiences. It’s a good reality check for yourself and hopefully an inspiration
for others.
No comments:
Post a Comment