Thursday, March 31, 2022

Shaochen Chen receives NSF BRITE Award to develop 3D printed microscale human organs-on-a-chip

NSF Brite Fellow Shaochen Chen of the University of California San Diego will create a nanoscale biomanufacturing platform powered by artificial intelligence that can serve as a functional, three-dimensional model of human tissues, organs and systems. This “human-on-a-chip” could transform regenerative medicine and tools for disease modeling, drug screening, environmental studies, space exploration, and other applications. 

The National Science Foundation has awarded an engineering research grant to Shaochen Chen, professor and chair of nanoengineering at the University of California San Diego, to explore 3D printed microscale human organs-on-a-chip. 

Funded through the NSF Boosting Research Ideas for Transformative and Equitable Advances in Engineering (BRITE) program, the 5-year BRITE Fellow grants provide up to $1 million per project. The NSF BRITE program is funded by NSF Division of Civil, Mechanical and Manufacturing Innovation (CMMI) in the NSF Engineering Directorate. 

"NSF created the BRITE Fellows opportunity to support proven researchers who have a high-risk vision with the potential for high reward for the Nation," said CMMI Division Director Robert Stone. "We anticipate that the research of the BRITE Fellows will create new fields, challenge current paradigms, or present unconventional approaches to intractable problems."

With funding from the NSF Brite program, Chen will create a nanoscale biomanufacturing platform powered by artificial intelligence that can serve as a functional, three-dimensional model of human tissues, organs and systems. This "human-on-a-chip" could transform regenerative medicine and tools for disease modeling, drug discovery and screening, environmental toxicity studies, and other applications.

By powering his 3D bioprinting platform with artificial intelligence, Chen aims to minimize the trial-and-error associated with the process that often leads to waste of cells and time. "This is a critical issue for bioprinting since live cells are quite expensive, difficult to acquire (think of patient cells, for example), and do not survive well outside the incubator," he said. 

The ultimate goal of the project is to fabricate a human-on-a-chip in a microfluidic platform that integrates major human tissues including heart, liver, kidney, lung, and gut, and then study the chip's biomechanics and tissue functions. 

No comments:

Post a Comment