Monday, June 5, 2017

South 8 Technologies wins Clean Tech prize at UC San Diego Entrepreneur Challenge

A new battery technology that will allow electric vehicles to travel farther on a single charge — with significant improvement in safety and cold weather performance — received the Clean Tech top prize of $60,000 in the 10th annual UC San Diego Entrepreneur Challenge pitch competition on May 30, 2017.

The winning technology was developed by a team of engineers and business students at UC San Diego who have founded a new company, called South 8 Technologies, in order to push this technology to market. "We're very grateful for this award and visibility. It's a confidence booster to know that we're developing the right tech at the right time," said UC San Diego materials science and engineering Ph.D. alumnus and South 8 Technologies founder Cyrus Rustomji.

South 8 Technologies was one of six finalist teams that competed in this year's Entrepreneur Challenge. The competition consisted of three tracks: High Tech, Life Tech and Clean Tech. Teams from each track pitched their business plans to local entrepreneurs and professionals with the aim of getting funds to help turn their startups into successful businesses.

The South 8 team developed a technology that enables lithium batteries to run at record low temperatures, down to -60 degrees Celsius (-76 degrees Fahrenheit). In comparison, today's lithium batteries have a low temperature limit of -20 degrees Celsius (-4 degrees Fahrenheit). "One of the big issues with electric vehicles is proper thermal management of the battery pack in cold winter months because batteries do not perform well at low temperature, which can decrease mileage. Our batteries can circumvent this issue," said Jungwoo Lee, a nanoengineering Ph.D. student at UC San Diego and member of South 8 Technologies.

The ability to operate at low temperature is also useful for extreme environment applications such as heavy-duty automotive engine cold-start, high atmosphere WiFi drones or weather balloons, satellites and aerospace applications. The technology can even be extended to ultra-low temperature applications, such as batteries to power spacecraft for interplanetary exploration.

Researchers achieved this exceptional low temperature performance by replacing the conventional liquid electrolyte in lithium batteries with what's called a liquefied gas electrolyte — gas that's stored under mild pressures in the liquid state. "Our liquefied gas electrolytes are conceptually similar to a propane tank for your barbecue grill. Propane is a gas at room temperature and pressure but may be liquefied when stored in a tank under its own vapor pressure," Rustomji said.

"Most work is currently being done in exploring liquid electrolytes and many battery researchers are exploring solid state electrolytes as another alternative. But we're going in the completely opposite direction by exploring gas-based electrolytes."

The technology offers other advantages as well. Liquefied gas electrolytes can potentially increase the energy density of lithium batteries by 50 to 100 percent, meaning that electric vehicles travel much farther on a single charge. These electrolytes also alleviate a problem called thermal runaway, which is when a battery's internal temperature gets hot enough to set off a dangerous chain of chemical reactions that in turn heat up the battery even more. "Our liquefied gas electrolyte offers a unique method of mitigating this thermal runaway which makes the battery safer," Rustomji said.

Rustomji came up with the idea to use liquefied gas electrolytes as a graduate student in the Sustainable Power and Energy Center (SPEC) at UC San Diego under professor Shirley Meng. After graduating with his Ph.D. in 2015, Rustomji continued on as a postdoc to further improve the novel battery chemistry and later joined with Lee and two other engineers in Meng’s lab who soon after became part of the core South 8 Technologies team.

"I couldn't be more grateful for this team," Rustomji said. "They often credit me with inventing this technology, but it's always been a team effort from the start. I owe the early success of South 8 Technologies to our talented engineers and advisor Professor Meng, who have been incredibly supportive, and to the MBA students and business advisor on our team who have been helpful in shaping our business focus."

Lee also noted that part of the team's success stems from a pilot program launched by the UC San Diego Institute for the Global Entrepreneur. Lee and several other members of South 8 Technologies are part of the first class of this pilot program, which teams Jacobs School of Engineering graduate students with MBA students in the Rady School of Management and teaches these students how to develop a business plan. 

"The classes taught us how to better pitch our tech to business people," Lee said. "As engineers, we often describe a technological advance as something that's X percentage better than Y. But to succeed in the business world, we need to describe our tech as something that results in greater value to the customer — something that is worth replacing the existing product."

One of the big selling points made by the South 8 team is that their new electrolyte can be seamlessly integrated into existing battery manufacturing processes. "I think what caught the judges' attention at the Entrepreneur Challenge is that we've developed an inexpensive, drop-in replacement electrolyte which is compatible with conventional batteries being made today. There's no need to redesign an entire manufacturing supply line. I think this is where so many other battery startups have failed," Rustomji said.

No comments:

Post a Comment