The story says, in part:
"On the diagnostic front, a variety of nanotechnologies have been developed for the detection of cancers, including circulating tumour cells (CTCs), which are responsible for a cancer’s spread. The challenge is that CTCs are few and far between. Normally, a few mingle with the 10m or so white blood cells and 5 billion red blood cells in each milli-litre of blood, making their detection and isolation a formidable challenge. Recently, though, a group at the University of California, San Diego, has developed self-propelled “microrockets” about 10,000 nano-metres long. These carry a small amount of zinc as fuel and, in a reaction that may be familiar from school chemistry lessons, this fuel can be made to react with natural acids in the body to generate hydrogen, which is then used to propel the rocket. Thus, at least in tissues which are acidic, microrockets should be able to move actively about. Experiments suggest they can navigate through a sample of blood at a speed of about 0.3 metres an hour.
Moreover, such microrockets might be guided from outside the body using magnets, if suitable magnetically sensitive materials were built into them. That guidance, plus their rapid propulsion, would make them more likely than otherwise to encounter CTCs, which they could then selectively pick up and transport to a desired location for analysis.
Proteus, the submarine in “Fantastic Voyage”, was nuclear-powered—a system of propulsion that remains beyond nanotechnology. But zinc propulsion is still an impressive feat. As it suggests, the field is advancing by leaps and bounds. With luck nanomedicine will, indeed, make its own fantastic voyage into the future."
The full story is available here.
No comments:
Post a Comment