Friday, June 22, 2018

B.J. (Byungji) Kim: Materials Science and Engineering graduate student

B.J. (Byungji) Kim is the graduate student who was recognized, in the month of May, by the Jacobs Graduate Student Council at the UC San Diego Jacobs School of Engineering.

B.J. Kim is a PhD candidate in the Material Science and Engineering Program at UC San Diego, working with professor Micheal J. Sailor.

A major portion of her Ph.D. research is focused on developing an immunogene therapeutic strategy to combat against a wide range of bacterial infections. By enhancing the body's existing immune system to fight against infections more efficiently, she aims to minimize the need to develop new antibiotics for each type of bacteria.

B.J. Kim's outstanding contributions have led to publications in leading scientific journals, such as Nature Biomedical Engineering and Nature Communications.

Nature Communications paper:
Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus

B.J. Kim has presented her work at conferences with great reception. At the 2017 Jacobs School of Engineering Research Expo, she was awarded the Katie Osterday Best Poster Award for Mechanical and Aerospace Engineering and the Lea Rudee Outstanding Poster Award (1st out of over 200 posters). Read the press release here.

At the 2018 Porous Semiconductors - Science and Technology (PSST) held in France, she was invited to give a keynote talk, and received the Lehmann Prize. Moreover, B.J. Kim led the writing of and successfully obtained over $4 million from the National Institute of Health to further her project on bacterial infections

B.J. Kim on LinkedIn

Thursday, June 14, 2018

Drones, medical devices and carbon nanotube fabrics: seniors show off their capstone projects

From medical devices to drones, a flying cell phone coverage platform and a detachable intubation device, senior mechanical, aerospace, and environmental engineering students exhibited their capstone projects Thursday at the Department of Mechanical and Aerospace Engineering's Senior Project Day. Most students were mechanical, aerospace or environmental engineers, though some teams included electrical and computer engineering students as well. The varied projects were completed in just one quarter, but reflected years of hard work. 
Students worked in teams on projects proposed by a sponsor facing a real-world challenge. Seniors said the capstone class taught them lessons about collaboration and documenting their work that will transfer well to their next step, be it an industry job or furthering their education.
Here are just a few examples of the tremendous effort put forth by these graduating students.

Self-generated Lower Body Negative Pressure Device for Deep-space Missions
This team of students has designed and built a device that generates negative pressure in the lower half of the body and allows blood to shift toward the lower extremities. The device doesn’t need an external pump and power source.  The proposal for their device has been recently accepted by NASA. The goal is to eventually send a version of the device to the International Space Station, where it will help control astronaut blood flow. That’s because in Earth gravity, blood pools in the lower body by itself. But when you’re in space, in microgravity, all this blood shifts toward the upper body. Eventually, the body adapts to microgravity, but then astronauts are more likely to feel dizzy and have trouble standing when they get back to earth. So astronauts need to spend some time in a device like the one the students devised.
Team: Joel Bickel, Ross McDonald, Kavin Tangtartharakul, Richard Valle

Sponsors: Dr. Alan Hargens and Dr. Lonnie Petersen and the UC San Diego Department of Orthopedic Surgery

Collapsible Shipping Container

When UTC Aerospace ships thrust reversers—a large piece of equipment that enables aircraft to decelerate-- they also have to pay to ship the very large containers back empty. These containers can be as large as 14’ x 10’ x 12’, so it’s not cheap. Students in the MAE156 Fundamental Principles of Mechanical Design course spent a quarter designing an alternative solution: a collapsible shipping container.

Their container reduces the volume of the original container being shipped back by 75 percent via quick-release pins. The pins don’t require tools and are attached to the box, so no screws or bolts will get lost in the process. With a few simple pulls, employees can fold the shipping container down significantly, reducing the costs of shipping back the empty container.
Team: Robbie Corpuz, Joey Sun, Hyunwoo (Paul) Park, Steven Salazar, Yu (Alexis) Su
Sponsors: UTC Aerospace Systems

Human- powered medical devices

Home health care services in the U.S. have been growing alongside the increasing elderly population, but many medical devices today require electricity or batteries. Undergraduate students designed a human-powered O2 Scope that combines an otoscope to check inside a patient’s ears with a opthalmoscope to check eyes. These are normally two separate devices, but the students combined them into one, using LED lights to check the ear and eye.
The O2 Scope is powered by a linear alternator which creates an induced electromagnetic force: the user just needs to shake it back and forth for five seconds to power the LED at max brightness for 30 seconds, which is long enough for an examination.

Team: Charmaine Castillo, Andrew Chen, Ariyan Rahmanian, Christopher Wiggins
Sponsors: Khai Nguyen, MD, Clinical Services Chief of Geriatrics

Project Laputa—A Flying Base Station for Disaster Recovery Scenarios

A team of engineering students designed, built and tested a flying platform that can be used to provide cell phone coverage in areas hit by a disaster. The main goal was to build an unmanned flying vehicle that can stay aloft for hours, as opposed to the 30 minutes that most can fly. Students built a cylindrical vehicle with a rounded lip, inspired by a machine gunnery platform used in WWII. It’s controlled by four rudders, which are each independently controlled by a servo motor. By the way, the project’s name is a reference to a flying island described in Gulliver’s Travels. It also appears in the movie “Castle in the Sky” by Hayao Miyazaki.
Team: Raymond Silver, Chengta (Dale) Lei, Charles Knight, Brynn Hall
Sponsor Professor Xinyu Zhang, Department of Electrical and Computer Engineering, UC San Diego

Shellfish Biosensor

Shellfish like oysters close their shells when they’re stressed. In order to determine when and how stressed they are, students designed a biosensor system using a magnet to wirelessly monitor when shellfish’s shell is open, and for how long and how wide.

By laying existing data such as oxygen level and temperature on top of this data, researchers could find correlations between when the organisms are stressed and what environmental factors may be contributing to that.

A magnet is attached to one side of the shell with the sensor on the other. Voltage values will change as the shell opens and the magnet gets farther from the sensor, showing how wide the shell is open, and for how long.
Team: Adrian Urrea, Claudio Coleman, Emma Schoenthal, Hsing-Han Chung, Marika Hale
Sponsor: Dr. Sarah Giddings and Dr. Jeff Crooks

Pelvic Girdle

When a woman has cervical cancer, she may receive external radiation, as well as brachytherapy, or radiation from inside the pelvis, which is an effective way to apply targeted radiation.

To do this today, the patient sits or lies on a heavy wooden board equipped with an arm that has the radiation source on it, which is inserted into her vagina. She sits there for an average of three hours, but has to be careful not to move, or the radiation won’t be applied to the correct area. This is uncomfortable and can make the procedure less effective.

Students designed a pelvic girdle that attaches to the patient, so the arm with radiation is attached to them and moves with them. This makes it less uncomfortable and more precise, since the device will move with the patient.

The team of students was able to use their device in two patient trials, and received positive feedback. They plan to continue developing the device over the summer.

Team: Megan Elliott, Keenan Finney, Cameron Hutton, Shichen Li
Sponsors: Dr. Jyoti Mayadev and UC San Diego Moores Cancer Research Center

Anchor for Shoulder Instability

This team of students designed and built a new type of anchor for shoulder surgery that is made of rigid components but is flexible. The anchor would eventually be used in surgery to reattach cartilage to shoulder bones. The students used CAD and conducted fine element analysis on their designs. They iterated through various 3D printed prototypes before machining the final prototypes from titanium. Further steps are required before the anchors can be used in the clinic.
Team: Bryan Brenna, Delta Caraulia, Darren Deng, Helen Tat
Sponsors: Sameer Shah, associate professor, Departments of Orthopaedic Surgery and Bioengineering and Dr. Adam Hsieh, UC San Diego School of Medicine

Portable deformation testing using carbon nanotube fabrics
Students designed a portable device to test deformities in a variety of materials using carbon nanotube fabric. This thin fabric can be used to gauge the strain of a material using a process called electrical impedence tomography. This is done today on a desktop computer in a lab, and isn’t portable.

The mobile device designed by a team of undergraduate students enables this testing in a variety of situations—for example, deployed warfighters could use it to ensure their protective clothing is still effective and hasn’t been critically damaged during an event; structural engineers could embed the fabric in concrete or bridges, for example, and use the portable device to quickly monitor the amount of damage done after an earthquake; the device could detect if a prosthetic limb was implanted improperly or deformed and is applying too much pressure on the user at a certain point.
Team:Aaron Gunn, Jacob Rutheiser, Maxwell Sun
Sponsor: Ken Loh, Ph.D., Associate Professor of Structural Engineering at UC San Diego and director of the Active, Responsive, Multifunctional, and Ordered-materials Research (ARMOR) Laboratory

Boomerang Gyroscope Demonstration Device
How does a boomerang fly? The answer to this question is surprisingly complex and involves precession—the process which causes the boomerang to always come back—and nutation—the process that causes the boomerang to tilt from the vertical to the horizontal. This team of students built a gyroscope that models both precession and nutation of a boomerang in flight. The device will be used for outreach and education.  
Team: Chuanyue Xia, Akinari Ohashi, Steven Teixeira, Kangchun Wang
Sponsor: Prasad Gudem

Cough simulation apparatus
Mechcanical and aerospace engineering students were tasked with creating a breathalyzer that can detect pathogens Austin Swafford, Director of Research for the UC San Diego Center for Microbiome Innovation.
“After talking with Dr. Swafford, we realized that there are no controlled ways to test a breathalyzer for pathogens—we can’t just ingest them for testing purposes—so we shifted the focus of our project to a cough simulator,”said student Mandy Nichols.
The device the students built looks mostly like a garden hose. To test it, a mixture of sugar and water is loaded into one end and spewed out the other to simulate a cough.
“The ‘cough’ is sprayed at a glucose strip,” said Kang. “We can measure the size of the droplet under a microscope and the concentration on the glucose strip.”
The idea is to provide laboratory researchers with a safe and effective way to test pathogen breathalyzers.
Team:Donghyun Seo, Ziliang Zhang, Emilee Kang, Mandy Nichols, Gaoge Xu, Dingran Lu
Sponsor: Austin Swafford

Detachable Intubation Device

If a patient is under anesthesia and needs assistance breathing, a medical professional will place an endotracheal tube in their airway in order to connect them to a ventilator. The endotracheal tube itself gets placed over an insertion tube that contains a bronchoscope which lets the nurse or doctor see inside the airways to navigate the tube where it eneds to go. Once it’s in place, the endotracheal tube is slid down into place, and the insertion tube is removed.
However, in some cases the pateint’s trachea is too small, and the insertion tube and endotracheal tube both need to be removed to replace the existing tube with a smaller endotracheal tube. Students designed a detachable bronchoscope that would allow the insertion tube to remain inside the patient while it’s disconnected from the bronchoscope for a smaller endotracheal tube to be swapped in. This means the tube only has to be placed once, instead of potentially multiple times.
Team: Mark Olesco, Rogelio De Guzman, Fengyuan Hu, Matthew Kohanfars
Sponsor: Frank Talke and Jaspreet Somal

Wednesday, June 6, 2018

What happens when two roboticists, one engineer and one holographic doctor are together on a panel?

Actor Robert Picardo, who played The Doctor in Star Trek Voyager. 
We found out Saturday, when when three of our professors were on the same panel at the holographic doctor from Star Trek Voyager, aka actor Robert Picardo. They discussed the future of healthcare robotics and AI. It was all that of "The Future of Medicine," an event hosted by the Clarke Center for Human Imagination, June 2 here on campus. Below is a Twitter thread with some of the event's highlights.

From left: computer science professors Henrik Christensen and Laurel Riek.
Christensen is the director of the Contextual Robotics Institute at UC San Diego. 

Ramesh Rao, director of the Qualcomm Institute at UC San Diego, is also a professor
in the Department of Electrical and Computer Engineering. 

A model of the original tricoder used in the Star Trek series. 

Friday, May 18, 2018

NanoDay 2018

Nanome had demos of their VR tool at NanoDay.
 Nathan Tong, a fourth-year nanoengineering student at the UC San Diego Jacobs School of Engineering, was tired of getting the same question over and over again: what is nanoengineering?

“I wanted to raise awareness about what the major is, what we do at UC San Diego, and also the potential future that could happen using nanoengineering,” Tong said.

So he and the Nanoengineering and Technology Society (NETS) at UC San Diego resurrected NanoDay, a celebration of all things nanoengineering that hadn’t been held in at least the last four years. The student organization plans to make the event an annual occurrence to highlight all that’s going on in the department, and provide undergraduate students with tangible ideas of what a career in nanoengineering could look like.

Professors Darren Lipomi and Sheng Xu shared their insight.
UC San Diego was the first in the nation to create an official academic Department of Nanoengineering in 2007 and began offering it as an undergraduate degree program in fall 2010. In its simplest form, nanoengineering draws on all disciplines of engineering to create devices at the nano, or sub-micron, scale. It’s an interdisciplinary science relating biochemistry, engineering and physics to create structures smaller than bacteria with complex functions.

As Darren Lipomi, a professor of nanoengineering and one of four professors on a panel about academic life in nanoegineering put it, nanoengineering principles underpin all of the concepts and phenomena we understand on a larger scale.

“I think the challenge is to identify something that’s not nanoengineering,” Lipomi said.

Professors David Fenning and Shaochen Chen answered
questions about their career path and gave advice to students.
He was joined on the panel by nanoengineering professors Shaochen Chen, David Fenning and Sheng Xu.

For a taste of post-grad life in industry, students heard from a panel of speakers from large companies like General Atomics, to small startups like GrollTex, and nanoparticle manufacturer nanoComposix, all of which have nanoengineering-specific positions.

Joseph Wang, chair of the Department of Nanoengineering, gave opening remarks at NanoDay about the wide scope of research underway at UC San Diego—from needle-free tattoo-like glucose sensors, to micromotors for drug delivery, stretchable batteries and flexible ultrasound patches, it’s a diverse field.

Representatives from General Atomics and Grolltex
 shared their perspectives on nanoengineering in industry.
Nanoengineering alumnus Steve McCloskey, who founded virtual reality company Nanome, shared his post-grad story and advice with students. Nanome allows users to experience and manipulate atoms and molecules in a 3D environment, making it easier to visualize and design new medicines or chemicals, for example. The startup was one of seven companies honored with a Best of Show award at the Bio-IT World conference.

Maternal Depression Awareness Month: a day of advocacy

Tomorrow: Saturday May 19, 2018 UC San Diego bioengineering major Julie Yip is co-hosting a Day of Advocacy in recognition of May as Maternal Depression Awareness Month. The free event is here at UC San Diego at The Basement.

When: Saturday, May 19, 2018 from 8:30 AM to 12:30 PM
Where: The Basement (Mandeville Center B202) at UC San Diego
Register for free

Bioengineering in Action

Julie Yip is one of three UC San Diego bioengineering undergraduates, along with Niranjanaa Jeeva and Ella Stimson, who are the co-founders of hapty hearts. These bioengineering students are developing haptic technologies with the goal of helping postpartum mothers better connect with their babies. The idea is a blanket technology that allows a mother to feel her child’s heartbeat in real time. Learn more about their project at: and read about the team’s participation in this 2017 UC Health Hack event. The team also won an award at the 2017 Social Innovation Challenge at University of San Diego. Here is a video they prepared for this competition.

Day of Advocacy Details
In recognition of May as Maternal Depression Awareness Month
Introduction to Perinatal Mood and Anxiety Disorders
Community Resources and Engagement Panel
Including representatives from Headway Therapy, Nutrition Instincts, Postpartum Health Alliance, Prokreate, San Diego County Breastfeeding Coalition 
Open Group Discussion
Including a personal story from Monica Mo, Founder and CEO of WellSeek, Inc. (a UC San Diego alumna)
When: Saturday, May 19, 2018 from 8:30 AM to 12:30 PM
Where: The Basement (Mandeville Center B202) at UC San Diego
Register for free

Monday, May 7, 2018

Meet Mark Liu: EnVision Maker Studio lab manager

By Kritin Karkare
Mark Liu in the EnVision Arts and Engineering Maker Studio
First the EnVision Arts and Engineering Maker Studio doubled in size, and now it’s expanding its full time staff to better support students. Undergraduate engineering and visual arts students using the space to build, tinker and design projects are in for a treat: Mark Liu joined the studio as the new lab manager in April. He’ll be providing students with support as they work on projects requiring tools like laser cutters, 3D printers, soldering irons and more.

EnVision supports the Jacobs School of Engineering’s Experience Engineering Initiative to ensure all students have a hands-on or experiential engineering course or lab every year — starting freshman year. There are engineering and visual arts courses held in EnVision’s classroom space, and students are able to use the studio for class assignments or projects of their own on weekdays from 9 am to 8 pm. 

Liu will help students with questions about the tools available in the studio, provide input and guidance when requested, and serve as a resource to the more than 1,000 students who use the studio each quarter.

Get to know Mark in this Q&A, edited for clarity.

Q: You have a background in mechanical engineering. What drew you to that?

ML: I always liked building stuff-- as a kid I played with Legos, built little robots, and have done FIRST robotics competitions for the last 10 years of my life as a student and then mentor. FIRST Robotics, which organizes youth robotics competitions around the world, is where I got experience running a lab, since I’m a mentor and run a FIRST team. I helped build the machine shop the team uses, and help the students use the tools.

Q: Is that what you’ll be doing at EnVision?

ML: I’ll be helping Jesse DeWald (EnVision Maker Studio Staff Director) with keeping everything running. In particular, I’ll be working with our students, staff and faculty to ensure that all of our classes have everything they need to be successful.

Q: How many different tools and technologies can students use at EnVision?

ML: We have 15 3D printers, laser cutters, CO2 laser cutters, a vacuum-former, and a printed circuit board oven. There are soldering irons, microscopes, a drill press, 10 computers with software for analysis and design including: CAD, MatLab, Adobe Suite and more. There’s also a lot of bench space so students will come in here to work on homework or projects and even hold meetings. It’s a great general workspace for both engineers and artists.

Q: What do you like to do outside of the EnVision studio?

ML: I’m into BattleBots and aerial photography with drones and quad copters. Two years ago Battle Bots was new to me but some friends had been doing it and I decided to join them. The team that I joined had been doing it for 15 years. Battle Bots are basically robots that can be remotely controlled and have weapons to fight other robots in big televised competitions.

 And way back when I was a freshman in high school I took a video film class as an elective for art since I can’t draw for my life. I took the video class because a few of my friends were in it, but I picked up photography editing and really liked it. So now I enjoy drones and aerial photography. That’s part of the reason why I think it’s cool that arts students can use EnVision as well.

Q: What are you most excited to work on?

ML: I’m excited to expand the space. Over the summer, we’re going to knock one wall down to push into the room next door so we can rearrange the studio portion. We’re also trying to establish a components store—a lot of students come in and need a resistor or capacitor, and now I have to say I’m sorry you have to go find that. So we’d like to start a store that has arduinos and resistors and small components for students. That’s a project we’re working on.

Monday, April 23, 2018

Tritons-to-be get a taste of life at the Jacobs School

Admitted students pose for a photo during Triton Day. Photo by Erik Jepsen
By Kritin Karkare

UC San Diego was all blue and gold on Saturday, April 14th for the campus’s annual Triton Day— a day devoted to helping admitted undergraduate students figure out if UC San Diego is the right university for them.  This year, a record breaking 97,670 first-year students applied to UC San Diego, and more than 25,000 of those admitted showed up on Saturday to scope out their potential new home.

The Structural Engineering open house featured a variety of
hands-on projects. Photo by Kritin Karkare
The IDEA Engineering Student Center, which provides engineering students with academic support and social engagement to foster an inclusive and welcoming community, offered several programs to help admitted students get a taste of life at the Jacobs School of Engineering and learn about the various academic and extracurricular programs available to them. A record 124 admitted students participated in an Engineering Overnight Program, where they were paired up with a current Jacobs School student to see what a day-in-the-life is like. Students staying in the Engineering Overnight Program were treated to a breakfast hosted by Albert P. Pisano, dean of the Jacobs School of Engineering. Participants were also able to tour labs, talk to different faculty, and learn more about student life on campus, including student organizations and resources to help students succeed at college. The admitted students slept overnight in an engineering student’s residence hall to get a feel for living on campus. Other activities included a trivia night, faculty panel and an engineering organization fair.

Students at the IDEA Engineering Student Center table.
Photo by Kritin Karkare

In addition to the IDEA Center programs, all six of the Jacobs School of Engineering departments were in full swing on Saturday, with fully staffed tables to share information about their respective majors to declared and undeclared students. Global Teams in Engineering Service (TIES), a humanitarian engineering project program, also had students and staff on hand to highlight its classes and projects for students to join.

Engineering organizations such as Engineers Without Borders (EWB), Biomedical Engineering Society (BMES) and the Institute for Electronic and Electrical Engineers (IEEE) met accepted students as well. BMES demonstrated its “Build A Brain” project, developed by its outreach committee for the San Diego Festival for Science and Engineering, and talked to students interested in bioengineering about research opportunities on campus and the variety of ways students can be involved in the bioengineering community. IEEE invited students to learn about its different student-led project teams, such as MicroMouse and Grand PrIEEE, and some of its technical workshops, such as making Valentine Hearts using programmed, blinking LED hearts.

The Electrical and Computer Engineering (ECE) Department showed off several student projects from ECE classes. Students talked about their ECE 188 (LabVIEW Programming: Design and Applications) projects, which all centered around making elevators using the LabVIEW interface. After tabling finished, the demos moved to Jacobs Hall. There, more projects such as an interactive laser pinball machine, made by students in ECE 115 (Rapid Prototyping) and an autonomous motor vehicle, were on display.

Jasmine Chiang, an IDEA Scholar, welcomes potential students at
Triton Day. Photo courtesy of IDEA Center.
The Structural Engineering Department hosted its own open house for interested students at the Structural and Materials Engineering building. Not only did students hear from Structural Engineering Department Vice Chair Hyonny Kim about structural engineering classes, but they also engaged with graduate students who showed off various demos, like a short-range project launcher and structures made from wood sticks. Organizations like Tau Beta Pi (TBP), the Society for Civil and Structural Engineers (SCSE), and Society for Asian Scientists and Engineers (SASE) talked to students about their clubs’ activities.