Tuesday, October 17, 2017

UC San Diego Mechanical and Aerospace Engineering Professor Miroslav Krstic Receives ASME Rufus Oldenburger Medal

Photo: Krstic (r) with Peter Meckl,
Chair of ASME Dynamic Systems & Control Division. 
UC San Diego mechanical and aerospace engineering professor Miroslav Krstic received the ASME Rufus Oldenburger Medal for lifetime achievements in automatic control at 10th ASME Dynamic Systems& Control Conference in Washington, DC in October 2017. 
Krstic’s acceptance lecture was on control of congested traffic (abstract at end of blog post).
Krstic serves as Sr. Assoc. Vice Chancellor for Research at UC San Diego. He is Director of the Cymer Center for Control Systems and Dynamics and holds the Daniel L. Alspach Endowed Chair in Dynamic Systems and Control.
Krstic is the mechanical and aerospace engineering department’s second recipient of the Oldenburger Medal, following Professor Bob Bitmead in 2014.

The Rufus Oldenburger Medal is a prestigious Society award for lifetime achievements in automatic control. Inaugurated in 1968, the medal recognizes significant contributions and outstanding achievements in the field of automatic control. Such achievements may be, for example, in the areas of education, research, development, innovation, and service to the field and profession. The award was established to honor Rufus Oldenburger for his distinctive achievements in the field and for his service to the Society and the Division. The list of recipients is a true honor role of major contributors to the science and profession of control. 
Abstract: Control of freeway traffic using ramp metering is a “boundary control” problem when modeling is approached using widely adopted coupled hyperbolic PDE models of the Aw-Rascle-Zhang type, which include the velocity and density states, and which incorporate a model of driver reaction time. Unlike the “free traffic” regime, in which ramp metering can affect only the dynamics downstream of the ramp, in the “congested traffic” regime ramp metering can be used to suppress stop-and-go oscillations both downstream and upstream of the ramp - though not both simultaneously. Controlling the traffic upstream of a ramp is harder - and more interesting - because, unlike in free traffic, the control input doesn’t propagate at the speed of the vehicles but at a slower speed, which depends on a weighted difference between the vehicle speed and the traffic density. I will show how PDE backstepping controllers, which have been effective recently in oil drilling and production applications (similarly modeled by coupled hyperbolic PDEs), can help stabilize traffic, even in the absence of distributed measurements of vehicle speed and density, and when driver reaction times are unknown.

Blue LINC hosts Medical Innovators Hall of Fame Series

The Blue LINC Healthcare Incubator, UC San Diego's first biomedical incubator, will kick off its new Medical Innovators Hall of Fame Series with a presentation by Michael Ackermann, former CEO of med-tech startup Oculeve. Oculeve, which developed a tear-simulation device for those with dry-eye disease, was co-founded by Garrett Smith, a Ph.D. candidate in bioengineering at the Jacobs School of Engineering, and eventually acquired by Allergan.

During his talk titled "From University Collaboration to $100M Acquisition: A Tearful Tale of BioDesign," Ackermann will explain how acquisition by a global pharmaceutical giant is helping him achieve his goal of reaching as many patients as possible and will highlight his journey as a BioDesign Fellow at the Stanford Byers Center for BioDesign. Ackermann will discuss why big tech companies have yet to disrupt healthcare and how that translates into big opportunities for entrepreneurs, students, and faculty interested in startups.

The seminar is scheduled for Thursday, Oct. 26 from 6:00- 7:15 p.m. in Fung Auditorium in the Powell-Focht Bioengineering Hall. Register to attend at http://bluelincsd.com/.

Thursday, October 12, 2017

A new model for electrochemical kinetics in nanoscale systems

Understanding the speed at which electrochemical reactions occur can provide scientific insight for various processes ranging from biochemical reactions to charge storage in capacitors and batteries. However, to date, many of the theoretical and experimental analyses of electrochemical reaction speed- such as those in the widely used Butler-Volmer formulations are based on classical thermodynamics and adapt 19th century-based Arrhenius theory. In these cases, the charge transfer rate is assumed to constantly increase with applied voltage. While complementary theories consider the influence of the configurational rearrangements in the electrolyte and energy level occupancy, none have related the kinetics to the specific arrangement of the electrons in the material constituting the electrode. The latter aspect is very important for nanoscale materials where the bulk is but a small part of the whole.

Recently, a team of engineers at UC San Diego led by professor of mechanical engineering Prab Bandaru and involving Ph.D. students Hidenori Yamada and Rajaram Narayanan, probed in detail, both theoretically and experimentally, the specific characteristics of a nanostructured material with respect to its effect on charge transfer. They demonstrated that in a one-dimensional nanotube, the electrons are confined to a line, while in two-dimensional graphene, the electrons are confined to a plane. Based on these findings, the researchers expect that the restriction on electron motion hinders charge transfer and electrochemical kinetics. On the other hand, the reduced electron scattering could enhance the kinetics. The team resolved these issues by taking advantage of the specific arrangement of the electrons in the nanostructure. They applied their theories to explain the experimental variation of the electrochemical rate constant of single layer graphene.

(a) Atomic force microscopy image of a section of the single layer graphene (SLG) sample transferred onto a p-Si/SiO2 substrate. The wrinkles on the sample surface corresponding to the line scan (white line) are displayed in the lower left inset. The Raman spectrum of the transferred SLG is indicated in the top right inset. (b) Schematic of the three-electrode droplet electrochemical cell (actual experimental arrangement shown in the top right inset). The SLG working electrode (WE), Pt wire counter electrode (CE) and a reference (REF) saturated calomel electrode are indicated.

The researchers detailed their findings in a recent issue of the Journal of Physical Chemistry Letters

The team discovered that the charge transfer rate may either increase, decrease or remain constant, and that such variation is sensitive to the orientation as well as the relevant dimensionality of the nanostructure. As charge transfer per unit time determines the electrical current that may be obtained from a given electrode, the UC San Diego study provides a firm rationale for the use of nanostructures in charge storage electrodes, with applications encompassing solid state battery-related systems, wearable sensors, etc., where electrical current modulations would impact energy and power delivery.

A plot of the charge transfer related electrochemical rate constant (k) normalized to the kη=0V as a function of the applied voltage (η), considered with respect to the redox potential. The experimental data is a poor fit with the theoretical fits expected from conventional Butler-Volmer (B-V) kinetics as well as three-dimensional Marcus-Hush-Chidsey (MHC) kinetics, but could be fit well through a dimensionality dependent electrochemical model proposed by a team of engineers at UC San Diego.

Paper: Dimensionality-Dependent Electrochemical Kinetics at the Single-Layer Graphene–Electrolyte Interface, R. Narayanan, H. Yamada, B.C. Marin, A. Zaretski, and P.R. Bandaru, J. Phys. Chem. Lett., 2017, 8 (17), pp 4004–4008.

Friday, October 6, 2017

3D-Printed Space Rocket Startup Funded by New VC Fund Contrary Capital

UC San Diego Jacobs School of Engineering students are the founders of one of the first two university startups to receive funding by a new VC fund called Contrary Capital.

Contrary Capital has a novel take on tracking down university startups to invest in. The details are outlined in a story by Mike Freeman ( @TechDiego on Twitter ) in the San Diego Union Tribune:

The Jacobs School startup that received funding is Additive Rocket Corporation (ARC), which 3D prints high-impulse, low-cost, lightweight metal rocket engines for the space industry. Additive Rocket Corp. Founded in 2015 by recent graduates Andy Kieatiwong and Kyle Adriany. According to the ARC website, “space exploration hinges on innovation of propulsion technology.”

The ARC students have participated in a number of entrepreneurism programs on campus, including The Basement and the Qualcomm Institute Innovation Space.

We look forward to tracking ARC’s successes. 

Good luck, and may the [propulsive] force be with you!

Wednesday, October 4, 2017

Combining soft robotics and space technology

Paul Glick, a Ph.D. student at the Jacobs School, got a unique chance to do hands-on at the Jet Propulsion Laboratory in Pasadena, Calif.
Glick, who works in the lab of mechanical engineering professor and roboticist Michael Tolley, got to design and carry out most of the experiments for an electrostatic gripper for flexible objects build by JPL and UC Berkeley engineers. The team presented their work at the IROS 2017 conference in late September in Vancouver.
Glick is part of the NASA Space Technology Research Fellowship program. He works to bring soft robotics to space technology. Here is a more detailed description of his research. 
Tolley's group will present some of their research at the Oct. 27 Contextual Robotics Forum here on the UC San Diego campus. 
Watch a video of the gripper that Glick ran experiments on in action:

Tuesday, September 26, 2017

Better hurricane monitoring with robotic swarms

When: 2:45 p.m. Sept. 28, 2017
Where: Santa Clara Convention Center, Expo Theater
Professor Thomas Bewley
UCSD Flow Control & Coordinated Robotics Lab
Charles Bergan
VP of Engineering
Qualcomm Technologies, Inc.
More info:
While some robots take jobs, others save lives. The technology transfer underway from the cellphone industry into robotics has enabled a new class of low-cost robotic devices capable of providing advanced warning and tracking capabilities for major storms such as hurricanes Harvey and Irma. We will discuss a new proposal that uses cellphone technologies to build autonomous swarms of sensor-laden robots that will significantly improve our ability to estimate and forecast such extreme and dangerous atmospheric events.
Full press release about the research here: http://jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=2102
 Simulation available here: http://flowcontrol.ucsd.edu/katrina.mp4

Tuesday, September 12, 2017

Undergraduate Bioengineering Program at UC San Diego Ranks #6 in the Nation and #2 among Public Engineering Schools

The U.S. News and World Report Best Colleges guidebook rankings are out today and the bioengineering undergraduate program at the University of California San Diego Jacobs School of Engineering is ranked #6 in the nation and #2 among public schools.

In the same U.S. News ranking, the University of California San Diego overall ranks as the nation’s 9th best public university, up one spot, compared to last year. For more than a decade, the publication has included UC San Diego in its list of the nation’s top 10 public universities.

For its undergraduate programs overall, the Jacobs School of Engineering is #20 in the nation and #11 among public engineering schools. (This is up from #24 in the nation and #12 among public schools last year).

This particular engineering ranking looks at undergraduate engineering programs at universities (like UC San Diego) that offer Ph.D. degrees. It’s based on peer assessments. At the Jacobs School, world-class research and education intersect every day. There are many different ways for undergraduates to experience and participate in cutting-edge research at the Jacobs School – in research labs run by professors, in hands-on educational labs, and in classrooms.

For example, bioengineers at the Jacobs School recently published a paper describing a breakthrough that grew from a collaboration initially focused on creating clinically relevant, hands-on classroom projects for bioengineering undergraduates at UC San Diego. This effort in bioengineering is part of Jacobs School Dean Albert P. Pisano’s Experience Engineering Initiative.

The research that grew out of class prep? It’s about using 3D models to cut surgery times.
The UC San Diego researchers showed that 3D printed models of hip joints help surgeons shorten surgery times for the most common hip disorder found in children ages 9 to 16. In the study, UC San Diego bioengineers collaborating with pediatric orthopedic surgeons showed that allowing surgeons to prep on a 3D-printed model of the patient’s hip joint cut the amount of time needed for surgery by about 25 percent. The 3D models could save $2,700 per surgery while reducing the amount of radiation each patient is exposed to. Learn more: bit.ly/3DPrintSurgery17

3D printed hip joints. They are from the project that is helping reduce surgery times. This research grew from a project to make bioengineering undergraduate education at UC San Diego more clinically relevant and fun. 

The Jacobs School is also highly ranked for its graduate programs and for overall research impact. The Jacobs School, for example, ranks 8th in the nation and 28th in the world according to a US News Best Global Universities for Engineering ranking, published October 2016. The same ranking placed Computer Science at the Jacobs School 9th in the nation and 17th in the world.

Wednesday, August 30, 2017

It's dark! And it's the middle of the day!

Jacobs School students, faculty and staff members were among the hundreds of thousands of Americans who traveled to be in the path of totality (when the moon completely covers the sun) for the first total solar eclipse to cross the continental United States in 40 years. And they shared their pictures and videos with us.
Antonella Wilby, a Ph.D. student in computer science and robotics, left from Rosenburg, Oregon, at 3 a.m. to drive to the Ankeny National Wildlife Refuge, south of Salem, to see the eclipse.
She wrote:
This was my first time experiencing a total eclipse, and it really is true that a photo or a description does not do the experience justice. I'd read about the darkness, a sunset on every horizon, a sudden drop in temperature, but it is something that must be seen firsthand to truly be understood. While I had read that animals and birds would often go silent at the moment of totality, as the moon slipped into place in front of the sun the onlookers dotting the hills of the refuge erupted into cheers and applause, jumping up and down and turning in circles to fully experience the 2 minutes and 20 seconds of midday twilight that nature had gifted us. How incredible to be a part of this collective celebration of the beauty of nature.
She made this time lapse image of the total eclipse:
 Computer science professor Bill Griswold saw the eclipse in Victor, Idaho, just east of the Grand Teton National Park. He gave us permission to share these pictures from the event:

Staff member Ioana Patringenaru was vacationing with her family in Portland, Oregon. They left at 5 a.m. to drive to the small town of Stayton, just east of Salem. They arrived around 7:30 a.m. to find a small number of people from all around the nation camped out on folding chairs an blankets on a field in front of Regis High School, a private, Catholic campus. The field was conveniently located near a couple of grocery stores with public restrooms and coffee shops.
Cars with license plates from California and Oregon, as well as Nevada and even New Jersey, were parked curbside by the field. Some people had eclipse glasses. Others had fashioned pinhole viewers. A few people had professional-grade equipment. There was even one drone.
As totality approached, the air got colder and windy. Many went to fetch jackets from their car. Patringenaru only had her smart phone with her, so her still photographs couldn't quite capture the beauty of the event. But she caught on video the excitement of her youngest daughter, age 7.
"It's really happening! It's so dark. And it's the middle of the day!" she says.

Tuesday, August 22, 2017

Gallium Nitride ‘Tangoes’ with Silicon to Overcome Nature’s Material Limitations

Gallium nitride (GaN) is a material that is used for radio and satellite communications in civil and military applications and in solid-state lighting such as LED bulbs. Researchers are also exploring GaN for use in high power applications such as power grids and electric vehicles. The market for GaN power devices is expected to reach $2.6 billion dollars by 2022. However, GaN is not an earth abundant material and only recently, small diameter GaN substrates have started to become available. Researchers have been growing GaN on foreign substrates for almost 5 decades, but the quality of the grown materials is compromised, especially on the standard microelectronics substrate, silicon (Si), which is over 1000 times cheaper than GaN substrates. The origin of the problem is a classical one: high quality material deposition is usually carried out near 1,000 degrees Celsius, but when dissimilar materials are cooled down to room temperature, their contraction can be disproportionate, resulting in the formation of cracks and material failure. This is exactly what happens when GaN is grown on Si. And because the crack severity depends on the thickness of the layers, the thickest pure and semiconductive GaN layer that can be grown on Si is 4.5 micrometers thick — too thin to provide good use of GaN for high power (kilovolt-scale) applications which require much thicker layers (10 microns or more). 

Scanning electron microscopy image of 
crack-free GaN on Si (19 μm thick at center).
Now researchers at the Integrated Electronics and Biointerfaces Group at UC San Diego led by electrical engineering professor Shadi Dayeh have solved this classical problem of thermal mismatches in the growth of dissimilar materials. In an article published on Aug. 21 in Advanced Materials, they combined fundamental crystal properties of GaN and geometrical effects to deflect strain from the crystal planes that usually crack under stress to the surface facets that can freely expand and contract in response to stress. By doing so, they were able to grow crack-free 19-micron-thick layers of GaN on Si — thicker than what’s needed for high-power applications. In the resulting structures, both GaN and Si had exposed surfaces to enable them to move, twist or “tango” together without cracking despite their thermal mismatch. 

Electrical engineering professor Shadi Dayeh (left) and 
Ph.D. graduate student Atsunori Tanaka (right) 
near the GaN MOCVD facility in the Qualcomm Institute 
at UC San Diego.
Thick layers also allowed the crystal defects — threading dislocations — to reduce from commonly achieved 108 – 109 per centimeter squared on Si to 107. And with the high material quality, Dayeh and his team demonstrated the first vertical GaN switches on Si. “This is the result of nearly four years of diligent efforts by graduate student Atsunori Tanaka, who learned and quickly excelled in the GaN metal organic chemical vapor deposition here at UC San Diego,” said Dayeh. “Our graduate students go through a full cycle of rigorous training in all aspects in electronic materials and devices and are prepared to tackle the greatest challenges in this area. A group of very talented students including Atsunori Tanaka, Woojin Choi, who fabricated the vertical switches, and Renjie Chen, who did the electron microscopy, have teamed up to complete the research,” Dayeh continued. Based on this work, Dayeh received funding in July from the National Science Foundation to realize a monolithically integrated GaN power converter on Si.

The growth, device fabrication and characterization were performed at UC San Diego and the electron microscopy was performed at the Center for Integrated Nanotechnologies (CINT), a Department of Energy Office of Basic Science user facility that provides access to top-of-the-line equipment under a user proposal system.

Friday, August 11, 2017

UC San Diego at RoboCup 2017

Darren Chen, a Ph.D. student in computer science at UC San Diego, had just landed in Japan when he saw ads in the subway for the competition he was going to take part in. "I realized it was a big deal," he said. He might even have panicked a little, he admitted.
In fact, the competition, called the RoboCup, brought more than 10,000 spectators and competitors to Nagoya, Japan at the end of July. The event, which is broadcast on Japanese TV, was celebrating its 20th anniversary. 
Chen was part of a team of Ph.D. students from the Contextual Robotics Institute here at the Jacobs School that was taking part in the event's RoboCup @ Home challenge. It was UC San Diego's first time taking part in the competition.
In the @ Home challenge, 10 universities from around the world compete to complete a series of tasks by programming and training a Toyota Human Support Robot. The UC San Diego team had to sort groceries and help a person carry grocery items.
 In addition, they faced a task to qualify. On the fly, they had to program the Toyota robot to autonomously navigate and map out a room without bumping into people and objects. The robot also had to be able to obey verbal commands in a noisy environment.
But the team's worst foe turned out to be the venue's WiFi. When 10,000 people were using the same radio band, it became difficult for the robot to communicate with other computers quickly.
The researchers enjoyed the experience of participating in the competition, and look forward to continuing to build assistive robots in the future.
In addition to Chen, the team working on the RoboCup @ Home challenge included   Angelique Taylor, Priyam Parashar  and Ruffin White as well master's student Jaskaran Virdi from the research groups of computer science professors Laurel Riek and Henrik Christensen. Christensen is the director of the Contextual Robotics Institute.
More info: http://jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=2268
Two of the UC San Diego Ph.D. students taking part in the competition, as seen by the Toyota robot.

Darren Chen, center, and Angelique Taylor, right, are two Ph.D. students in the research group of Professor Laurel Riek. 

Taylor has some fun with the robots on exhibit at RoboCup.

Wednesday, August 2, 2017

Alum demos 3D avatar from just one 2D picture

Watch Jacobs School alum Iman Sadeghi demonstrating how you can build a 3D avatar from just one 2D picture by using software from Pinscreen, the company where Sadeghi is VP of engineering.
The technology is powered by neural networks and GPUs.
The Pinscreen demo starts around the 50:30 mark.
The 3D avatar can be used in VR environments. It is expressive and reflects different light conditions.

Thursday, July 27, 2017

Smart Glove Converts Sign Language Letters Into Text


Engineers at the University of California San Diego have developed a smart glove that wirelessly translates the American Sign Language alphabet into text and controls a virtual hand to mimic sign language gestures. The device, which engineers call “The Language of Glove,” was built for less than $100 using stretchable and printable electronics that are inexpensive, commercially available and easy to assemble.

The glove was created in the lab of nanoengineering professor Darren Lipomi. The lead graduate student on the project, Timothy O'Connor, spoke to 10 News - ABC San Diego about the work. Check out the video clip above.

In addition to decoding American Sign Language gestures, researchers are developing the glove to be used in a variety of other applications ranging from virtual and augmented reality to telesurgery, technical training and defense.

The glove also made an appearance in KPBS, Newsweek, Popular Mechanics, IEEE Spectrum and various other news outlets.

Click here for the full story on the glove -- read more on how it was built, how it works and what's next.

Tuesday, July 18, 2017

One Imaging Agent to Rule Them All

by Heather Buschman, UC San Diego Health

When you have a medical scan, it’s usually an MRI (magnetic resonance imaging), CT (computed tomography) or more recently, PL imaging (photoluminescence). Sometimes it’s all three as your care team works to determine what’s ailing you. That means three different appointments and three different imaging agents — typically nasty-tasting stuff you have to drink in order to sufficiently enhance the imaging signal so that diseased tissue can be distinguished from healthy tissue. Each comes with its own side effects and potential risks.
“What the medical field has long needed is a single imaging agent that will work across multiple imaging systems,” said Adah Almutairi, PhD, associate professor in the Skaggs School of Pharmacy and Pharmaceutical Sciences at UC San Diego.
Almutairi is always one to take up a challenge like that. Her bioresponsive materials lab is known for designing and developing smart polymers, nanoparticles and hydrogels for many innovative medical and research applications. One of Almutairi’s pet interests is in lanthanides, a family of naturally occurring chemicals that intrigued 19th century chemists because, among many other interesting properties, they burn easily in air, fluoresce under UV light and react with most nonmetals.
Inexplicably, scientific interest in lanthanides waned in the 1970s. A couple of years ago, Almutairi took up the mantle to explore how lanthanides do one special thing: convert low energy light into high energy light. She has long believed that her team could take advantage of that property for medical applications.
Almutairi and her team recently developed a new nanoparticle with a lanthanide-based core-shell-shell architecture. The nanoparticle emits light for optical imaging, but also relaxes water molecules for MRI and attenuates X-rays for CT simultaneously. 
Inexplicably, scientific interest in lanthanides waned in the 1970s. A couple of years ago, Almutairi took up the mantle to explore how lanthanides do one special thing: convert low energy light into high energy light. She has long believed that her team could take advantage of that property for medical applications.
Almutairi and her team recently developed a new nanoparticle with a lanthanide-based core-shell-shell architecture. The nanoparticle emits light for optical imaging, but also relaxes water molecules for MRI and attenuates X-rays for CT simultaneously. 

Three in one: the lanthanide nanoparticles can be used for photoluminescence (PL), computed tomography (CT) and magnetic resonance imaging (MRI) simultaneously.
In a study published in Nano Letters, the researchers tested these nanoparticles in “phantom” tissue — a hydrogel system that mimics living tissue in the laboratory. Not only does the nanoparticle work for each imaging type, it works better than each individual imaging agent on its own.
The team is now working to reduce the size of their new imaging nanoparticle so a patient’s kidneys can clear it more easily from the bloodstream.
“The main point of this study is that we overcame an engineering challenge,” said Sha He, a graduate student in the Jacobs School of Engineering at UC San Diego and first author of the new study. “Now we will tweak the design so we can advance this technology to pre-clinical and clinical testing. Our goal is that one day this nanoparticle, or one like it, will allow a patient to complete his or her imaging all at once, reducing the risk and toxicity associated with separate administration of multiple imaging agents.”

Friday, July 14, 2017

Mechanical engineering alumus honored for work on autonomous amphibious vehicle

UC San Diego Jacobs School of Engineering mechanical engineering alumnus Aaron Burmeister (B.S. mechanical engineering 2001) has been selected as one of the nation’s top scientists and engineers of the year by the Assistant Secretary of the Navy for Research Development and Acquisition.

Burmeister is an engineer for Space and Naval Warfare Systems Center Pacific (SSC Pacific). He won the prestigious Dr. Delores M. Etter Top Scientists and Engineers award, in the individual engineer category, for his work developing an autonomous amphibious vehicle.

“It’s challenging because perception, navigation, and control strategies have to change as the vehicle transitions from sea to surf zone to land domains. We have started the effort by developing an autonomy system that can control a commercially available amphibious manned vehicle capable of going up to 45 mph on land or water,” explained Burmeister, in a statement. 

He goes into more detail on the project in a US Navy video by Aaron Lebsack (embedded below).  

Friday, July 7, 2017

Institute for the Global Entrepreneur Hosted First Annual Innovation Award

C:\Users\mej029\Downloads\Image-1 (4).jpg
Audrey Olsen
On June 14, the Center on Global Transformation (CGT) in partnership with the Institute for the Global Entrepreneur (IGE) hosted the UC San Diego Application Student Innovation Contest for undergraduate students at the Jacobs School of Engineering. Contest submissions were judged by industry experts, including Qualcomm executives and serial tech entrepreneurs. The winning product, by Audrey Olson, was called MatchRest.  It is a mutual accountability software application that matches people with comparable habits and sleep goals and rewarded them for staying and keeping one another on track. For example, a person with the sleep goals of falling asleep before midnight and turning off her computer an hour beforehand would check in with her partner nightly before doing each, and vice versa.  Each user would also have a virtual bedroom showcasing the status of his or her virtual avatar, which could be upgraded or customized more thoroughly as more goals were reached. Audrey won $5,000 in prize money. Second and third place students received $2,000 and $1,000 respectively.
Jesse Ren
Audrey’s partner in developing the product is Jesse Ren, acomputer science student and a 2016 NSF I-Corps participant. The Institute of Global Entrepreneur’s I-Corps program teaches lean start-up principles that are focused on product/market fit and customer discovery. Next up for the team, they plan on doing initial customer interviews in the fall to help in the development of their minimum viable product (MVP). They are currently working on personal projects (one such project is for UC San Diego's Project-in-a-Box initiative) while studying, applying, and interviewing for full-time post-graduate positions in the software industry.
We reached out to Elizabeth Lyons, Professor at the School of Global Policy, to talk about the contest.
IGE - What is the innovation contest and why hold it now?
EL - The UC San Diego Student Innovation Contest is a contest for undergraduates at the Jacobs School of Engineering (JSoE), who are interested in working on a real-world problem that has not yet been solved; second, expanding their knowledge and capabilities through a hands-on project; and third, the opportunity to win some money. We held the contest for the first time this year because of the important role innovation plays in economic growth and our interest in understanding whether it’s possible to encourage more innovation through contests like this. We also wanted to give JSoE students the opportunity to grow as innovators, and to build more links between the School of Global Policy and Strategy, JSoE, and the Institute for the Global Entrepreneur (IGE).

IGE -  What was it that made the winning team stand out?

EL - The winner of the contest did an outstanding job of building a commercially viable and technologically functional product. All the judges agreed that her application was user-friendly and that her revenue model was compelling. She stood out in how well she took into consideration all aspects of the innovative process. We received a number of submissions that were technologically very compelling or that had the potential to be commercially successful, but only a few that scored well in both areas.

IGE - When is the next challenge and how do teams sign up?

EL - We are currently working on how to proceed with the contest going forward. Our options for the next challenge will depend on the lessons we’re now compiling from the first contest. We’ve received very helpful feedback from many of our contest participants, and we’re also trying to analyze what led some participants to exert more effort than others in the hopes that we can improve on our contest design going forward. We will be sure to announce any upcoming challenges as soon as we’ve finalized the details!